Представьте автомобиль, рисунок покрышек которого динамически подстраивается под тип дороги, покрытие кузова само устраняет трещины и укрепляется в местах более частого контакта с водой, предотвращая коррозию. Вообразите одежду, которая отлично “дышит” летом, но становится водонепроницаемой, едва пойдёт дождь. Подумайте о камуфляже, устойчивом к загрязнению и меняющим цвет, как хамелеон свой окрас. Фантастика? Уже не совсем.

Исследователи из Гарвардской школы инженерных и прикладных наук при поддержке университетов Иллинойса и Питсбурга получили грант в размере $855 тыс. на разработку методов “четырёхмерной печати”. Под “четвёртым измерением” понимается не только создание предметов с эффектом самосборки, но и дальнейшее развитие технологии 3D-печати в направлении адаптивных материалов. Как отмечают авторы, создаваемые таким образом вещи смогут меняться, приспосабливаясь к различным изменениям:

Вместо того чтобы использовать (в 3D-печати) полимеры с жёстко определёнными свойствами, мы предлагаем применять биомиметические композиты. Изменение формы и свойств созданных из таких материалов вещей станет возможным как по требованию, так и самопроизвольно – под воздействием внешних факторов.

Иными словами, созданные по методу “4D-печати” вещи смогут менять свою функциональность, подстраиваясь под разные условия. Например, они будут становиться более твёрдыми или эластичными, гладкими или шероховатыми, самостоятельно восстанавливаться, изменять окраску и форму… Вариантов множество. Общая суть в том, что заранее учтённые изменения на микроуровне проявятся в виде определённых макроэффектов. Живые организмы постоянно приспосабливаются к внешней среде. Пора наделить этим свойством и рукотворные объекты:

Объединяя наши возможности точной послойной печати, синтеза адаптивных материалов и компьютерного моделирования поведения полученных структур, мы рассчитываем заложить фундамент для новой области – 4D-печати.

Лежащие в основе этого подхода “умные полимеры” сегодня применяются преимущественно в узкоспециализированных областях. Они используются для производства гидрогелей, биоразлагаемых упаковок и в экспериментах из области биомедицинской инженерии. Однако интерес к ним возрастает с каждым годом, а недавно значимые практические результаты были достигнуты и в микроэлектронике.

Инженерам из Университета штата Северная Каролина удалось сконструировать тензометрический датчик, самостоятельно восстанавливающийся после механического повреждения.

Аналогичными свойствами обладают защитная плёнка для экранов мобильных устройств компании Toray Advanced Film и чехол для iPhone. Они сами устраняют мелкие царапины в течение нескольких секунд.

Из-за иерархической структуры полимерных материалов малые конформационные изменения каждого мономера приводят к выраженному изменению общих свойств. Поэтому даже малого внешнего воздействия может быть достаточно для запуска различных процессов адаптации.

Например, способность “умных полимеров” к быстрому и обратимому фазовому переходу из гидрофильной микроструктуры в гидрофобную при изменении pH и температуры используется при создании новых средств избирательной доставки лекарств к поражённым клеткам. Из-за специфических условий в очаге воспаления изменения в структуре носителя и высвобождение из него лекарственного препарата происходят только в нужном месте, за счёт чего снижается выраженность побочных эффектов.

В технике одним из самых востребованных материалов с активной микроструктурой считается частично стабилизированный диоксид циркония. Он был разработан в Государственном объединении научных и прикладных исследований Австралии (CSIRO). Созданные из него детали не только обладают высочайшей механической прочностью, но и способны заполнять образовавшиеся в них трещины благодаря фазовому переходу из неравновесного в равновесное состояние. Как материал с исключительной износостойкостью в настоящее время он широко используется в установках измельчения и дробления химической, фармацевтической и пищевой промышленности.

Использование “умных полимеров” – закономерный этап в развитии технологии 3D-печати. Сами по себе такие материалы не позволяют создавать достаточно сложные вещи, в отличие от их определённого сочетания с запрограммированными свойствами.