Интерфейсы «мозг-компьютер»: практика применения и перспективы

Технологии
автор: Андрей Васильков  06 марта 2013

Разработка различных вариантов интерфейса «мозг-компьютер» (BCI) в последние годы перестала быть чисто экспериментальным направлением и находит всё большее практическое применение. Каковы были ожидания, что удалось воплотить уже сейчас и чего ждать от этой технологии в ближайшем будущем?

Методы регистрации электрической активности мозга были разработаны в 1929 году немецким физиологом Гансом Бергером. Уже в тридцатые годы электроэнцефалография стала восприниматься не только как диагностическая процедура, а как нечто гораздо более универсальное и перспективное. Появилась даже идея читать мысли и использовать ЭЭГ для мысленного управления внешними устройствами.

Несмотря на значительный интерес, заметных успехов в расшифровке отдельных сенсорных импульсов и управляющих сигналов мозга учёные достигли только к семидесятым годам. Большой вклад внесли исследования Натальи Петровны Бехтеревой и работы Эдмонда Девана.

Примерно тогда же стало окончательно ясно, что регистрация потенциалов никакого отношения к чтению мыслей не имеет даже в перспективе. Зато была показана возможность распознавать шаблоны суммарной электрической активности мозга и использовать их для формирования мысленных приказов электронике.

Повсеместное распространение персональных компьютеров сильно ускорило прогресс в данной области. Одним из первых практических применений BCI считается «виртуальная клавиатура» Фарвела и Дончина, созданная в 1988 году.

Реализация виртуальной клавиатуры BCI по методу Фарвела и Дончина (фото: Dr. Eric Sellers)

Реализация виртуальной клавиатуры BCI по методу Фарвела и Дончина
(фото: Dr. Eric Sellers)

С середины девяностых начался настоящий бум развития нейрокомпьютерных интерфейсов. Они стали излюбленной темой фантастов, но реальность порой превосходила ожидания. К примеру, роботы стали слушаться не только мысленных приказов от находящегося поблизости человека, но и воспринимать отправляемые через интернет команды от удалённых на многие километры лабораторных животных.

Всё это время предпринимались попытки приспособить BCI для более актуальных практических задач. Основным направлением была выбрана реабилитационная медицина. С помощью интерфейса «мозг–компьютер» многие научные коллективы пытались вернуть утратившим конечности или парализованным людям способность к движению.

Ранее «Компьютерра» писала о том, как интерфейс BCI помогает парализованным людям вновь учиться ходить, создавая обходной путь для нервных импульсов к нижним конечностям.

Схемы применения интерфейса «мозг-компьютер» (изображение: East Tennessee State University)

Схемы применения интерфейса «мозг-компьютер»
(изображение: East Tennessee State University)

Помимо восстановления моторных функций активно велись разработки и в направлении сенсорных. Десятилетиями группы учёных пытались наделить слепых хоть каким-то подобием зрения.

В каждом из этих направлений сегодня есть заметные успехи, но сложностей в практическом применении ещё масса. Главные из них касаются больших габаритов всей системы, малого времени её автономной работы и многочисленных проводных подключений. По этой причине, а также в силу высокой стоимости такие устройства до сих пор единичны.

Весной 2013 года стало известно, что исследователи из университета Брауна (штат Род-Айленд), похоже, смогли решить многие из указанных проблем. Коллективу учёных удалось создать первый беспроводной имплантируемый интерфейс «мозг-компьютер».

Первая реализация имплантируемого беспроводного интерфейса "мозг-компьютер" (фото: Arto Nurmikko,  Ming Yin)

Первая реализация имплантируемого беспроводного интерфейса «мозг-компьютер» (фото: Arto Nurmikko, Ming Yin)

Новый BCI работает от бесконтактно подзаряжаемого автономного источника питания. Помимо миниатюрности он отличается мобильностью, возможностью долговременного использования и надёжностью передачи сигналов, сравнимой с проводной реализацией.

Имплантируемый вариант BCI (схема: Brown University)

Имплантируемый вариант BCI (схема: Brown University)

В проводных вариантах кабели ограничивали возможности дизайна и задавали жёсткие рамки для самих условий испытаний. Добровольцы фактически были привязаны к креслу, поэтому раньше экспериментальная часть обычно ограничивалась анализом ЭЭГ при выполнении ими простых движений. Теперь, благодаря беспроводному интерфейсу, появилась возможность сконцентрироваться на изучении работы мозга во время сложных процессов в более естественных условиях и реальных сценариях. Беспроводная реализация BCI была успешно опробована на свиньях и обезьянах в течение более 13 месяцев. Следующий шаг – испытания на добровольцах.

Электроника нового интерфейса (за исключением микроантенн) размещается в герметичном титановом корпусе. Она питается от литий-ионной батареи с индуктивной схемой зарядки. Чип соединяется с различными отделами коры больших полушарий головного мозга при помощи микроэлектродов. В текущей версии интерфейса используется сто штук. Электроды имплантируются в соматосенсорные и двигательные области коры, соответственно передавая сигналы от органов чувств и управляющие команды мозга.

Рентгеновский снимок интерфейса "мозг-компьютер", имплантированного макаке-резус (изображение: Brown University)

Рентгеновский снимок интерфейса «мозг-компьютер», имплантированного макаке-резус (изображение: Brown University)

От чипа оцифрованные данные передаются на частоте 3,2 и 3,8 ГГц со скоростью 24 Мбит/с на расположенный поблизости компьютер. Потребляемая мощность трансмиттера составляет всего 100 мВт, поэтому двухчасовой индуктивной зарядки всей имплантированной части системы хватает на шесть часов непрерывной работы. Исследователям удалось даже создать и вживить миниатюрную систему водяного охлаждения для того, чтобы нагрев прибора во время зарядки не вызывал неприятных ощущений.

Проделанная работа важна не столько для выполнения более сложной экспериментальной части, сколько для нужд практической медицины. В рамках другой инициативы того же университета (BrainGate) разрабатывается интерфейс управления роботизированными манипуляторами «силой мысли». Его более сложный вариант будет использоваться для контроля движений собственных рук у лиц с травмой шейного отдела позвоночника.

В перспективе такое применение интерфейса «мозг-компьютер» сможет улучшить качество жизни тысяч людей. Конечно, до чудес симбиоза с компьютером, описанных Николаем Горькавым в романе «Астровитянка», ещё очень далеко. Пока все эти системы выглядят крайне неуклюже (см. видео), однако избавление от проводов уже может существенно повысить удобство работы с ними.

В России работы в направлении BCI ведутся разными научными коллективами, но чаще других в последнее время упоминается лаборатория нейрофизиологии и нейрокомпьютерных интерфейсов биологического факультета МГУ. Под руководством профессора Александра Каплана были разработаны методики игрового обучения управлению BCI и различные компьютерные программы. Благодаря одной из них лишённые возможности печатать люди могут набирать текст, мысленно выбирая нужную букву на пересечении символьных строк и рядов. Другие программы созданы для посттравматической реабилитации методами биологической обратной связи и направлены на восстановление функций самого мозга.

К сожалению, несмотря на хорошую научную базу и наличие квалифицированных кадров, по уровню технической реализации отечественные разработки ещё значительно уступают рассмотренным выше примерам. Даже простое упоминание числа одновременно используемых у зарубежных коллег отведений (128 — 256) вызывает в наших соотечественниках разноцветную зависть.

Поделиться
Поделиться
Tweet
Google
 
Читайте также
«Бионические» протезы: какие органы сегодня можно подменить электроникой
«Бионические» протезы: какие органы сегодня можно подменить электроникой
Argus II стал первым бионическим глазом, разрешённым в медицине
Argus II стал первым бионическим глазом, разрешённым в медицине
Бионический протез из «Звёздных войн» стал реальностью
Бионический протез из «Звёздных войн» стал реальностью
  • Сепулька

    «Выбор по Тьюрингу» Гарри Гаррисона.

    Ещё известны люди (членовредители? мозахисты?) «под камеру» сверлящие себе череп

    здоровенной дрелью.

    • пМВ

      Емцев-Парнов «Приговоренный к наслаждению», скромно и со вкусом…

  • _Alex_

    Что же это у вас потребляемый ток в милливаттах? В милливаттах мощность всю жизнь была.

    • Андрей В.

      Вы правы, Алекс. Я некорректно выразился. Исправил.

  • 42212513231253
  • zombe

    Замечательная статья. Молодцы компьютеровцы. К сожалению, не помню в каком издании, была опубликована информация, что американское правительство планирует исследования мозга с помощью внедрения наночастиц в нейроны. Наночастицы, соединенные с белками или же другими органическими веществами, внедряющимися в работу нейронов могут стать радиоантеннами, которые либо принимают сигнал, либо его выдают в системах магниторезонансной томографии. Благодаря этой хитрости можно будет изучать работу мозга в динамике и соответственно взаимодействовать с ним. Проект глобальный и позиционируется как проект расшифровки генома человека. Мне кажется, что подобные технологии могут лечь в основу следующего поколения интерфейса «мозг-компьютер», при условии, что томограф доведут до размеров мотоциклетного шлема. Но это все «хотелки-мечталки».

  • Zorchiy

    да, скоро создадут таки ту самую педальку наслаждения. Чтобы нажать и ощутить вечный кайф. тогда не нужны будут ни телевизор, ни интернет, ни наркотики, ни секс с рок-н-ролом. как только появится интерфейс мозг-компьютер вырастет целая индустрия наподобие косметической хирургии по вживлению самых экзотических электродов в самые непроходимые дебри мозга. наркотики покажутся детскими игрушками.

Хостинг "ИТ-ГРАД"
© ООО "Компьютерра-Онлайн", 1997-2016
При цитировании и использовании любых материалов ссылка на "Компьютерру" обязательна.
«Партнер Рамблера» Почта защищена сервером "СПАМОРЕЗ" Хостинг "Fornex"