Уникальные свойства сегнетомагнетиков изменят облик компьютеров будущего

В архитектуре компьютеров назревает очередная революция. В ближайшие годы могут произойти переход от электронных модулей к спинтронным и унификация используемых типов памяти.

В спинтронных устройствах информация кодируется путём изменения собственного магнитного момента (спина) электронов. Это позволяет повысить плотность хранения данных и увеличить скорость их обработки, сохранив свойство энергонезависимости состояния памяти. Возможность сочетать в одном устройстве сильные стороны долговременной и оперативной памяти приведёт к появлению компьютеров со сплошным адресным пространством и не требующих времени на загрузку.

Самым перспективным спинтронным устройством на сегодня является магниторезистивная оперативная память (Magnetoresistive random-access memory – MRAM), в которой инжектирование электронов с упорядоченным спином реализуется с помощью квантовых магнитных туннельных переходов. Идеи создания такой памяти высказывались советскими физиками ещё пятьдесят лет назад, однако практические разработки стали возможны лишь после открытия в 1988 немецкими учёными эффекта под названием «гигантское магнитосопротивление». Одной из иллюстраций его успешного практического применения является запуск в 2008 году японского спутника SpriteSat, в котором MRAM заменила модули как SRAM, так и флэш. Дальнейшим усовершенствованием MRAM стала технология переноса спинового момента (spin transfer torque – STT), поэтому последние чипы этой памяти называют также STT-MRAM или SPRAM.

Ключевую роль в создании этой памяти и других спинтронных устройств играют сегнетомагнетики — материалы, одновременно обладающие магнитной и электрической упорядоченностью, а также свойствами, обусловленными их взаимодействием. Наиболее важными из них является возможность изменения намагниченности электрическим полем и управление сопротивлением с помощью магнитного поля.

Недавно были изучены свойства перспективного сегнетомагнетика – ортоферрита тербия – TbFeO3. Исследование проводилось на установке нейтронных исследований в Берлине. С помощью компьютерного моделирования, основанного на результатах этих экспериментов, стало возможным выяснить детальное влияние структуры материала на его физические свойства.

Схема магнитного упорядочивания ионов железа (красные сферы) до и после спиновой переориентации в кристаллической структуре ортоферрита тербия
Установлено, что именно квантовое взаимодействие между железом и тербием играет важную роль в проявлении уникальных свойств этого материала. Тербий вызывает значительное увеличение электрической поляризации и создает один из самых сильных магнито-электрических эффектов, наблюдаемых в материалах.

Помимо ортоферрита тербия сегнетоэлектрические свойства были предсказаны ранее для
феррита висмута (BiFeO3), титаната бария (BaTiO3) и других соединений. Однако только в последние годы появились методики, позволяющие провести детальный анализ и сравнение свойств таких материалов.

Что будем искать? Например,ChatGPT

Мы в социальных сетях